
What is Cloud Native
DevOps Maturity?

July 2022 Field Guide

What is Cloud Native DevOps Maturity?

Table of Contents

What is Cloud Native?

Understanding the Landscape of Cloud Native
Why Cloud Native?

Codification ©

What is DevOps

How does DevOps work?
Defining the DevOps Model
Benefits of Adopting DevOps
Why DevOps is so Crucial Today
Understanding DevOps Culture
DevOps Practices

What Cloud Native DevOps Maturity Looks Like

Cloud Native Maturity
DevOps Maturity

How Do You Get Started With Cloud Native DevOps?

Cloud Native DevOps Mistakes to Avoid

Conclusion

2

3
4

6

6
7
7
8
8
9

12

13
18

21

23

24

Introduction 1

Introduction

Digital transformation is a strategic goal for many organisations today. As a regulated
enterprise, it’s even more critical to prevent your business from being disrupted by
new startups armed with better technologies and more data. The way to achieve
complete modernisation through digital transformation is by adopting cloud native
technologies and implementing DevOps processes in your organisation. In technical
terms, we call this target state of transformation as Cloud Native DevOps Maturity.

Cloud Native DevOps Maturity essentially covers transforming the technologies,
processes, policies, and people in your organisation to achieve full modernisation.

In this guide, we will take a deep dive
into understanding what Cloud Native
DevOps is, along with practices and
technologies used to achieve maturity.

1

Codification © What is Cloud Native DevOps Maturity?

What is Cloud Native?

Codification ©

Cloud native is essentially a modern way of developing software. It uses many

modern techniques in software development such as microservices, containers, CI/

CD pipelines, agile methodologies, DevOps and DevSecOps practices.

Adopting cloud native gives organisations the ability to harness the flexibility,

scalability, and robustness of cloud computing. The practice of cloud native uses

many tools and techniques to build applications and platforms for public cloud

services such as Google Cloud, Microsoft Azure, or Amazon Web Services - as

opposed to using traditional methods such as on-premises data centres.

The cloud native approach has essentially been powered by new-age businesses

offering more customer-centric, user experience-focused services such as Uber,

Netflix, Spotify, and Airbnb. Today, the cloud native approach is being adopted

by companies that are looking for better digital agility and disruptive capabilities,

essentially giving them a significant competitive advantage over their competitors.

The Cloud Native Computing Foundation (CNCF) describes cloud native as below:

“Cloud native technologies empower organisations to build and run scalable applications

in modern, dynamic environments such as public, private, and hybrid clouds. Containers,

service meshes, microservices, immutable infrastructure, and declarative APIs exemplify this

approach.”

2

What is Cloud Native DevOps Maturity?

Understanding the Landscape of Cloud Native

3

Codification ©

This is the topmost layer. This stage
focuses on tools used by developers
for cloud native projects. These tools
can be used to build new cloud native
applications (databases, VOIP systems,
containers, etc.) and platforms. They
are also used in building CI/CD
pipelines.

Application Definition
and Development

This layer focuses on everything
that is needed to build and securely
deploy the environment in which a
cloud native application would run.
Developers implement techniques
such as infrastructure-as-code,
imaging, build automation, ensuring
application security and key and policy
management in this stage.

Provisioning

This is the layer on which everything
related to running a cloud application
is focused. Developers concentrate
on containerisation with tools such as
Docker, storage and networking in this
stage.

Runtime

This is the layer on which everything
related to running a cloud application
is focused. Developers concentrate
on containerisation with tools such as
Docker, storage and networking in this
stage.

In addition to the above layers, other
practices and techniques such as
Observability need to be considered
as well. As the complexity of a
cloud native environment increases,
organisations can purchase additional
resources from the market such as
platform-as-a-services (PaaS) services.

Orchestration and
Management

What is Cloud Native DevOps Maturity?

Why Cloud Native?

4

Codification ©

Cloud native approach has many advantages over the traditional on-premises
approach.

Affordability - Cloud has recurring fees
instead of an upfront fee. Although the
monthly cost could be higher, maintenance
and support services are already included,
requiring no annual contracts.

Predictability of Cost - Gain from monthly
payments that are predictable and cover
software licenses, upgrades, support, and daily
backups.

Less Maintenance - You don’t have to worry
about server maintenance as cloud software is
hosted on public servers.

Quicker Deployment - Unlike on-premise
programs, which must be installed on a
physical server and each PC or laptop, cloud-
based software is distributed over the Internet
in a matter of hours or days.

Better Scalability - Greater flexibility is offered
by cloud technologies because you only pay
for what you use and can simply scale to meet
demand, for example, by adding and removing
licenses.

Less Energy Use - Cloud technologies offer
more flexibility as you only pay for what you
use and can simply scale to meet demand, for
example, by adding and removing licenses.

Better Security - Your data is safer on the
cloud than in an on-premise server because
data centres employ security procedures that
are more expensive for most firms to pay.

Cloud Native

More Control - You own all of your data,
hardware, and software platforms. You make

the configuration, upgrades, and system
modifications.

Total Cost of Ownership - The Total Cost of
Ownership (TCO) of an on-premise solution

is lower than that of a cloud system because
you only have to pay for your user licenses

once.

Less Dependability - With on-premise
systems, you may access your software
without relying on the internet or other

outside variables.

On Premises

What is Cloud Native DevOps Maturity?

5

Codification ©

Due to its adaptability, dependability, and security, cloud native can be regarded as

being better than on-premise since it frees you from the headache of maintaining

and updating systems and lets you focus your time, money, and resources on

executing your essential business strategy. With increasingly more adoption rates,

cloud services are quickly overtaking other options for organisations since they

offer real-time access to systems and data from a range of devices regardless of

However, they both have their own disadvantages.

Need for Connectivity - To use cloud
solutions effectively, you must have
dependable internet access.

Higher Costs Long-Term - Cloud applications
can be more expensive over the duration
of the system’s life cycle despite needing a
smaller initial investment, raising the total cost
of ownership (TCO).

Less Flexibility - You don’t have to worry
about server maintenance as cloud software is
hosted on public servers.

Cloud Native

High Maintenance - With an on-premises
system, you are in charge of disaster

recovery, data backups, storage, and server
hardware and software. Smaller businesses

that have constrained financial and
technological resources may find this to be a

problem.

High-Cost - Since on-premise systems
typically require a sizable initial investment,

capital expenditures are frequently
necessary. In addition, you must factor in

maintenance expenses to guarantee support
and functional improvements.

Implementation Takes Time - Because
each computer and laptop must have

its own installation process, on-premise
implementations take longer.

On Premises

What is Cloud Native DevOps Maturity?

What is DevOps?

Codification ©

6

In traditional ways of working, teams in an organisation work in a “siloed” manner;

which means teams or departments operate on their set prerogatives with little

collaboration with each other.

However, with DevOps, this is not the case. Teams in a DevOps culture will sync

with each other on a real-time basis. Additionally, teams often get merged where

engineers for instance will work across the entire lifecycle.

DevOps models often integrate multiple functions into single entities to increase

efficiency and cooperation. For example, in some models, quality assurance and

security teams can work together alongside development and operations teams

across the software development lifecycle.

DevOps teams also use tools to automate repetitive tasks that traditionally were

manual and slow. They also use new technologies that make it easier to update and

evolve applications more quickly. With new tools, technologies, and ways of working,

DevOps enables developers to work more independently and do tasks with more

velocity without requiring help from other teams.

What is Cloud Native DevOps Maturity?

How Does DevOps Work?

Defining the DevOps model

7

Codification ©

Speed:
Increasing the velocity of the software
development process enables you to
innovate and deliver products for your
customers faster. It also makes it possible to
adapt to changing markets better.

Reliability:
Using practices like Continuous Integration
and Continuous Delivery means you get
to increase the reliability of your pipeline
while also improving its quality. You can also
assess the performance of your applications
in real-time by using practices such as
Monitoring and Logging.

Better corporation:
DevOps promotes a working culture
based on accountability and ownership. In
a DevOps environment, developers and
operations teams work collaboratively while
sharing responsibilities that help reduce
inefficiencies and save time.

Better delivery times:
DevOps makes it possible to increase the
frequency and velocity of new product
releases. The faster you can iterate and
release new features and fix bugs, the better
you will be able to be more competitive by
responding to customer needs effectively.

Scale:
DevOps brings consistency to the table.
By combining consistency with practices
like automation, managing dynamic and
complex systems becomes easier with
low risk. For example, using a technique
like infrastructure-as-code enables you to
increase the repeatability and efficiency
of your software development lifecycle
substantially.

Improved security:
In a DevOps model, you can use practices
such as automated compliance policies,
fine-grained controls, and configuration
management techniques to significantly
improve the security of your applications.

Organisation Customers

Delivery Pipeline

Feedback Loop

Build

Plan

Test Release

Monitor

Benefits of Adopting DevOps

What is Cloud Native DevOps Maturity?

Why DevOps is so Crucial Today

8

Codification ©

Understanding DevOps culture

The world has been completely transformed by software and the Internet. Software
now plays a crucial role in every aspect of a business, going beyond simply providing
support. Through software supplied as online services and applications on a variety
of devices, businesses can scale their communication and have more visibility into
their customers than ever before. Additionally, they use software to transform
every step of the value chain, including logistics, communications, and operations.
Companies now must change how they produce and distribute software in a similar
way to how physical goods companies changed how they design, build, and deliver
things utilising industrial automation throughout the 20th century.

Changes in an organisation’s culture and mindset are necessary to make the
transition to DevOps. DevOps is essentially about breaking down barriers between
development and operations - where traditionally, the two teams operated in silos.

DevOps increases the efficiency of developers and the dependability of operations.
The teams make an effort to communicate regularly, boost productivity, and raise
the calibre of the services they offer to consumers.

Teams for quality control and security may also become closely incorporated with
these teams.

Regardless of their internal structure, organisations implementing a DevOps model

have teams that see the full development and infrastructure lifecycle as a part of

their duties.

What is Cloud Native DevOps Maturity?

DevOps Practices

9

Codification ©

Software engineers who use Continuous Integration
constantly merge their code changes into a common
repository, which is followed by automated builds and
testing. Continuous Integration’s main objectives are to
detect and fix issues more quickly, enhance the quality
of software, and shorten the time it takes to validate
and publish new software upgrades.

Continuous Integration

Continuous Delivery involves automatically building,
testing, and getting code updates ready for production
release. By delivering all code alterations to testing
environments and/or production environments after
the build step, it advances on Continuous Integration.
When Continuous Delivery is implemented correctly,
developers will always have a build artefact that is
ready for deployment and has undergone a set of tests.

Continuous Delivery

A single application can be built as a collection of small
services using the microservices architectural design
strategy. Each service operates as a separate process
and interacts with other services via a clear interface
and a lightweight method, usually an HTTP-based API.
Microservices are based on business capabilities, and
each service has a narrow scope. Microservices can be
created using a variety of frameworks or programming
languages and deployed individually, as a single service,
or as a collection of services.

MicroservicesMicroservices

What is Cloud Native DevOps Maturity?

10

Codification ©

Infrastructure-as-CodeInfrastructure-as-Code

In the practice of “infrastructure as code,” infrastructure
is created and controlled through the use of code and
software development methods like version control and
continuous integration. Instead of needing to manually
set up and configure resources, developers and
system administrators may interact with infrastructure
programmatically and at scale thanks to the cloud’s
API-driven paradigm. Because of this, engineers may
interact with infrastructure using tools that are based on
code and treat it similarly to how they approach application code. Infrastructure and
servers may be swiftly deployed using standardised patterns, updated with the most
recent fixes and versions, or duplicated in repeatable ways because they are defined
by code.

Configuration Management

Code is used by programmers and system administrators to automate
operational operations, host and operating system settings, and more.
Configuration changes are repeatable and standardised when code is used.
Developers and systems administrators are freed from having to manually
configure servers, operating systems, and system applications.

Policy-as-Code

Organisations may monitor and enforce compliance dynamically and at scale
when infrastructure and its configuration are formalised in the cloud. Code-
described infrastructure may therefore be tracked, verified, and modified
automatically. This makes it simpler for enterprises to control resource changes
and guarantee that security policies are correctly applied across the board
(e.g. information security or compliance with PCI-DSS or HIPAA). Since non-
compliant resources can be immediately marked for more examination or even
brought back into conformity, this enables teams inside an organisation to
move more quickly.

What is Cloud Native DevOps Maturity?

11

Codification ©

Monitoring and Logging

Organisations keep track of metrics and logs to see
how infrastructure and application performance affects
how customers use their products. Organisations
can gain insights into the underlying causes of issues
or unanticipated changes by capturing, classifying,
and then analysing the data and logs generated by
applications and infrastructure. As services must be
accessible around-the-clock and as the frequency
of application and infrastructure updates rises,
active monitoring becomes more and more crucial.
Organisations can monitor their services more
proactively by setting up alerts or doing real-time
analysis of this data.

Monitoring and Logging

One of the most important cultural aspects of DevOps
is the improvement of communication and collaboration
inside an organisation. By physically combining the
tasks and workflows of development and operations,
collaboration is established through the use of DevOps
technologies and automation of the software delivery
process. On top of that, by utilising chat applications,
issue or project tracking systems, and wikis to facilitate
communication, these teams established strong
cultural norms on information sharing. As a result,
communication between developers, operations, and
even other teams like marketing or sales can be sped
up, enabling a closer alignment of objectives across the
entire organisation.

Communication and CollaborationCommunication and Collaboration

What is Cloud Native DevOps Maturity?

What Cloud Native DevOps
Maturity Looks Like

12

Codification ©

In previous sections, we explored what cloud
native is, what DevOps is and why Cloud
Native DevOps is so critical to modern digital
transformation. When an organisation is fully
modernised with Cloud Native DevOps, we say
that that organisation has achieved Cloud Native
DevOps Maturity.

Let’s explore how the process works and what the
result of adopting Cloud Native DevOps maturity
looks like

What is Cloud Native DevOps Maturity?

Cloud Native Maturity

13

Codification ©

An organised and thorough migration model along with a wise investment plan will
go a long way toward guaranteeing success. An effective approach for achieving
cloud native maturity will pinpoint typical adoption patterns or “maturity levels.”
You may find it simpler to create your own cloud approach if you comprehend these
steps.

For this guide, let us now discuss four general levels of achieving cloud native
maturity.

It’s crucial to remember that advancement doesn’t necessitate adopting every step
along the route. Some businesses skip stages entirely, moving straight from Stage 1
to Stage 3, for example. Not every firm needs to reach Stage 4, and the majority will
simultaneously have a variety of apps in their portfolio at various maturity levels. For
instance, it makes sense to shift customer-facing apps that generate money to Stage
3 or Stage 4, which are geared for quick application delivery and scaling. These levels
need to be the most agile and responsive. Older programs that are in maintenance
mode, on the other hand, can be maintained at Stage 1 or Stage 2 without needing to
make a significant further investment. Remember that businesses are implementing
a DevOps operational philosophy to complete these transformational objectives as
well. Hybrid apps are also a reality, where some components of the program remain
to function on-premises because of fixed mainframe systems or data gravity.

Stage 1

Traditional
Data Centres

Stage 2 Stage 3 Stage 4

Lift
and Shift

App
Refactoring

Microservices

What is Cloud Native DevOps Maturity?

14

Codification ©

Stage 1: Traditional Data Centres

Traditional data centre apps are often watched over by the IT Ops team and run in
traditional virtual machines (like VMware) or on bare metal in a private data centre.
Of course, there are advantages and disadvantages to various deployments and
structures.

Total control over your hardware, software, and data, reduced reliance on outside

elements like internet access, and perhaps a lower total cost of ownership (TCO)

when applied at scale are all benefits.

The drawbacks include high initial expenses that frequently necessitate capital
expenditure (CapEx), as well as maintenance obligations.

Stage 2: Lift and Shift

A cloud adoption journey has been started by many organisations today due to
the elasticity and agility that the cloud offers. Cloud migration, however, rarely
goes without a hitch. A company will frequently “lift and move” the identical virtual
machines it was using on-premises to the cloud. Usually, the target environment is
a public cloud service provider like Amazon AWS, Microsoft Azure, or Google Cloud,
but it can also occasionally be a private data centre set up as a private cloud.

What is Cloud Native DevOps Maturity?

15

Codification ©

Despite the anticipated cost advantages of a strong migration strategy, businesses

frequently discover that running their apps in the cloud, in the same manner, it did

on-premises is significantly more expensive.

These programs were designed for huge VM configurations, which are quite
expensive on the cloud. In other instances, the infrastructure’s support is absent
from the premises. For instance, when simply lifted and relocated to the cloud,
several application servers that depend on multicasting capabilities to connect no
longer function. A refactoring of the application is necessary due to these flaws.

Finally, these traditional data centre applications were developed based on hardware
dependability hypotheses that might no longer hold in the cloud. In contrast to the
cloud, which is established on the concept that hardware is cheap and unreliable
and that the software layer provides application durability and stability, on-premises
hardware is often custom manufactured and intended for superior reliability. This is
yet another element that necessitates application refactoring.

Stage 3: App Refactoring

An enterprise must modify its apps once it finds that certain of its lifted-and-shifted

applications are fundamentally constrained in the cloud. Refactored programs

are a fantastic fit for many contemporary platforms that are made specifically for

executing apps in cloud environments.

What is Cloud Native DevOps Maturity?

16

Codification ©

These contemporary platforms frequently include cloud-native services or
application platform-as-a-service (PaaS) technology. Pivotal Cloud Foundry, Red Hat
OpenShift, AWS Elastic Beanstalk, Azure PaaS, and Google App Engine are examples
of common PaaS technologies. Numerous managed services from AWS, Azure,
and Google Cloud are included in the cloud native offerings, including messaging,
Kubernetes, and database services, to mention a few.

The deployment, management, and scaling of the application code are under
the purview of the IT group in a traditional data centre apps scenario. These
contemporary platforms, in contrast, automate processes and abstract away a lot of
complexity. Applications become elastic, dynamically utilising computing resources
to accommodate changing workloads. The current method frees the IT department
from managing items that offer no intellectual property benefits to the company,
allowing it to concentrate on business challenges rather than infrastructure
difficulties.

Programs that have been refactored frequently contain the same code as
monolithic apps but in smaller, easier-to-manage pieces. Although the code for
these smaller components was not initially designed for completely modular,
stateless deployments that would make them linearly scalable, they can now scale
automatically using PaaS or cloud-native services.

Stage 4: Microservices

As the name implies, a microservices architecture divides an application into several
small, modular, and independently deployable services that may scale as needed
to handle the demands of an application’s workload. These services are typically
designed utilizing serverless computing or container and orchestration technologies
(such as Docker and Kubernetes or AWS, Azure, and Google container services)
(AWS Lambda, Azure Functions, or Google Functions).

What is Cloud Native DevOps Maturity?

17

Codification ©

Applications created using microservices architectures are extremely scalable and

fault resistant, guaranteeing a flawless end-user experience. Smaller services can be

given to agile DevOps teams by organisations, allowing them to operate freely and

develop more quickly, bringing new products to market faster.

However, it necessitates a significant investment: either the organisation must
redesign existing applications from the ground up or use the microservices method
when creating any new apps.

Even while these granular services have numerous advantages and are easier to
administer individually, merging them into larger business applications can be
challenging, especially in terms of monitoring and troubleshooting.

Cloud Native Also Needs DevOps to Work

The success of the adoption journey depends not only on technology but also
heavily on organisational transformation. To reap the full rewards of reaching greater
levels of maturity, siloed Dev and IT organisations must be replaced with more
DevOps-oriented ones.

A DevOps team usually includes developers and engineers for site reliability (SREs).
The entire application is not the responsibility of each agile team; rather, it is just a
few services. Teams take tremendous satisfaction in how quickly they can offer new
functionality and how responsive their services are. Extreme ownership is the mantra
here. DevOps differs from the conventional Dev and Ops divide because of this.

What is Cloud Native DevOps Maturity?

DevOps Maturity

18

Codification ©

Culture

Technology is only one aspect of DevOps;
a change in company culture is also
necessary. The support of all stakeholders,
from engineers to executives, is necessary
for your DevOps journey. Effective cross-
functional partnerships are necessary for
DevOps maturity, as are business leaders’
consistent and reasonable expectations.

Instead of viewing DevOps as a continuous journey of development and operations
optimisation and integration, many organisations make the error of treating it like
a final, static destination. However, with a structured approach, you can visualise a
roadmap for achieving DevOps maturity for your organisation.

With such an approach, you can more easily advance to the next level by
determining the strengths and weaknesses of your organisation and concentrating
your training on the critical areas that require development.

1.

Automation

To achieve the continuous delivery and
deployment schedule necessary for DevOps
maturity, automation is essential. This is
commonly known as CI/CD, or continuous
integration/continuous deployment, in
DevOps. Continuous integration and
continuous delivery (CI/CD) aims to
improve software quality without slowing
down development by anticipating and
eliminating problems through continuous
testing throughout the software
development lifecycle.

3.

Testing

The distinction between development and
testing does not exist in a mature DevOps
ecosystem. Every product should have
its own testing environment, and testing
should be automated. Additionally, to make
sure you’re not leaving any gaps, you should
frequently do risk evaluations as well as
ongoing analysis and validation of your test
coverage.

2.

Fundamentals of DevOps

Architecure

You require application architecture that is
created to meet your DevOps objectives
to move up the DevOps maturity model.
With distinct modules that can operate
(or fail) without affecting the work of
others, explicitly stated quality criteria, and
protection against cascade failures, your
design should facilitate simple testing and
quick deployments. You must select an
architecture that meets your needs and is
consistent with your DevOps maturity goals
because no single design is suitable for all
DevOps settings and infrastructure.

4.

What is Cloud Native DevOps Maturity?

19

Codification ©

On the path to DevOps maturity, an organisation will typically pass through five
stages. Although you can’t skip any levels, you’ll probably discover that each one is
exponentially easier to reach as you start to worry less and less about details and
concentrate more on higher-order processes.

Stages of Achieving DevOps Maturity

Stage 02: Implementation

When your operations teams start focusing on automation and your development teams start
putting more of an emphasis on obtaining higher agility, you have entered stage 2. You’re beginning
to stress collaboration between the development and operations teams in stage 2.

Stage 05: Target State

Your DevOps procedures are now producing observable outcomes. Even though you continue
working to enhance collaborative teamwork and process optimisation, you’re still able to celebrate
successes at the corporate, team, and individual levels.

Stage 04: Iteration

Your company is fully committed to DevOps methods and understands them. Your current priorities
should be increasing your CI/CD and optimizing your DevOps.

Stage 03: Development

In stage 3, organisations install well-defined automation and DevOps procedures into place.
Additionally, your entire organisation must join the DevOps journey, accept these new procedures,
and support your objectives.

Stage 01: Status Quo

Stage 1 places you in a conventional IT environment where operations and development are
managed separately. Even if you could be considering a switch to DevOps, you haven’t yet put any
changes into practice.

What is Cloud Native DevOps Maturity?

20

Codification ©

Your DevOps journey will never be over, and to maintain DevOps maturity, you’ll
need to continually look for ways to make your procedures more efficient. As you
move through the levels and improve your processes, moving through the DevOps
maturity model becomes easier. However, to avoid stagnation, you still need to
continually assess your abilities and development.

You might need to hire outside DevOps professionals to help you better utilise the
tools and processes necessary to get you back on track if you find yourself stuck at a
certain level and unable to pinpoint the areas you need to improve to advance.

What’s next for your DevOps Roadmap?

What is Cloud Native DevOps Maturity?

How Do You Get Started With
Cloud Native DevOps?

21

Codification ©

The starting points for a cloud-native strategy are as follows:

1. Selecting a cloud provider over an on-premises one to
implement a cloud-first strategy
2. Adopting a multi-cloud strategy
3. Instilling a DevOps culture

DevOps becomes a priority when businesses realise that agile
development requires both automation and a change in culture to
build quality apps more quickly. It might become quite difficult to
manage many hybrid setups or streamline infrastructure-related
tasks. Because of this, the use of technologies that synchronise
cloud-native and DevOps processes is growing quickly.

What is Cloud Native DevOps Maturity?

22

Codification ©

Here are some things to consider to implement Cloud Native DevOps simpler:

Eliminates implementation disputes
between the operation and
development teams, facilitating
communication between developers
and testers.

1. Containerisation

Creates a set of procedures,
terminology, and tools for the
development and operation teams.
Microservices provide complex
process automation and make it
simpler to move toward agile product
development, which is necessary for
continuous delivery.

Microservices

2. Switching to
Microservices

Minimises complexities and error risks.
Additionally, it enables developers to
concentrate on the final product rather
than correcting problems.

5. Establishing
CI/CD Pipelines

Overcomes the difficulties posed by
underpinning computing, storage, and
networking.

3. Using a Container
Orchestration Platform
like Kubernetes

Vastly simplifies the QA process while
improving reliability.

4. Implementing Test
Automation

What is Cloud Native DevOps Maturity?

Cloud Native DevOps Mistakes to Avoid

23

Codification ©

Overuse of Tools

As soon as you make the switch to cloud-
native DevOps, you’ll try to automate as
many tasks as you can. But you can’t just
keep adding tools to achieve this. You
must choose the greatest tools for your
application and put them together in the
best possible way. You will lose a lot of
time and money if you use your equipment
excessively.

Another error made in this situation is when
developers become overly reliant on a
certain tool. However, the heart of DevOps
resides in the spirit of cooperation and the
application of the right procedures, which
help to boost productivity and improve
procedures.

a.

Failing to Implement Monitoring

Testing within the pipelines for
implementation streamlines things, but
it also makes things incomplete and
constrained. By revealing every flaw that
develops even after testing, continuous
monitoring, on the other hand, can optimize
the entire process.

b.

Lapses in Security

The time and money required for
security inspections might be significant.
Teams frequently imagine that the CI/
CD workflows make use of security
checking capabilities. A crucial step for
DevOps to take to protect against process
vulnerabilities in the implementation of a
separate tool that handles security.

c.

Being Disorganised

DevOps adoption should be a gradual
process that involves lots of learning along
the way. It is just not viable to expect a
corporation that has been utilising on-
premise applications to instantly align all
of its platforms and structures into a single
cloud-native architecture. Making new
cloud-native applications might be simple,
but converting current applications will
probably take some time.

Going step-by-step would be the wisest
course of action. Applications should first
be moved to the cloud before moving on to
microservices from monoliths. After that,
you can set up platforms for orchestrating
containers. But none of this will work until
you have the culture change we always
preach about.

d.

What is Cloud Native DevOps Maturity?

Conclusion

Codification ©

24

Achieving Cloud Native DevOps Maturity aids companies in bringing innovative
technologies to market more quickly, accelerating their digital transformation. The
cloud-native strategy has been a boon for businesses that produce software since
it reduces massive cloud expenses while increasing efficiency and performance.
Utilising the full potential of cloud-native
DevOps opens up limitless, on-demand
software development abilities.

What is Cloud Native DevOps Maturity?

Get in touch with Codification to start your
journey toward Cloud Native DevOps Maturity

25

Codification ©

Codification is a Cloud Native transformation consultancy, with a team of over 100 engineers,
consultants and business professionals distributed across the world. We were founded in 2019
in the United Kingdom. We have grown since then to have a presence in Europe, the Middle East
and Asia, serving leading multinational corporations, government institutions, global banks, and
industry giants with our consultancy and expertise.

Through our experience, we have noticed that visionary leaders want to transform their
organisations into technology companies in order to thrive in the new digital-first economy. Here,
businesses want to release software faster, improve quality and build a continuous improvement
culture where the best ideas win. At Codification, we establish the direction of a company’s
technological transformation journey and help implement new technologies and processes,
resulting in a modernised digital-ready organisation.

Codification United Kingdom
The Core
Bath Lane
Newcastle upon Tyne
NE4 5TF

Phone: +44 01670 223994

Web: www.codification.io/

Visit our website to learn more: www.codification.io/services

About Codification

Services we offer:

- Cloud Native Application Development
- Cloud Platform Building and Migration
- Enterprise Transformation
- Security and DevSecOps
- Governance and Compliance

What is Cloud Native DevOps Maturity?

