
Codification’s guide to
Event-Driven Architecture

Field GuideOctober 2022

Event-Driven Architecture

Table of Contents

Codification ©

Introduction 1

How Event-driven Architecture is Developed 3

What is Event-driven Architecture? 2

What is an Event? 5

Event-driven Applications 8

How Event-driven Architecture Works 7

Benefits of Using Event-driven Architecture

Further outcomes
9

10

When to use Event-driven Architecture? 12

Event-driven Architecture Models 11

Event-driven Architecture & Microservices 13

Summary 14

Is Event-driven Architecture for You? 13

Introduction

1

Codification ©

Modern applications created using microservices often use an event-driven
architecture, which uses events to initiate and facilitate communication between
disconnected services. An item added to a shopping basket on an e-commerce
website is an example of an event; which is a change in state or an update. Events
can either be identifiers or convey the state (the item purchased, its price, and a
delivery address) (a notification that an order was shipped).

Event-driven architectures are made up of three main parts: event producers, event
routers, and event consumers. An event is published by a producer and sent to the
router, which filters and sends it to consumers. Due to the decoupling between
producer and consumer services, each can be grown, modified, and deployed
separately.

Event-Driven Architecture

2

Codification ©

What is Event-driven Architecture?

An organisation can identify “events” or crucial business moments (such as a

transaction, site visit, shopping cart abandonment, etc.) using event-driven

architecture (EDA), a software design pattern, and respond to them in real-time or

almost real-time.

Event-Driven Architecture

The previous “request/response” architecture, in which services had to wait for a
response before moving on to the next task, is replaced with this pattern. Events
control the flow of event-driven architecture, which is built to react to them or take
action in response to an event.

Asynchronous communication is a common term used to describe event-driven
architecture. As a result, neither the sender nor the recipient must wait for the
other to complete their current task. That particular message is not what drives the
systems. For example, a phone call is thought of as synchronous or more like the
traditional “request/response” design. You receive a call from someone asking you
to execute a task. You wait while the other person finishes, and then both sides
hang up. Text messaging is an example of an asynchronous event. When you send
a message, you might not even be aware of the recipient or whether anyone is
listening, but you are not anticipating a response.

Event Producer
Event Broker

Event Consumer(s)

Topic 1

Topic 2

Topic 3

Event consumers

Event consumers

Event consumers

Event

Event

Event

Subscribe Topic 1

Event

Subscribe Topic 2

Event

Subscribe Topic 3

How Event-Driven Architecture is Developed

3

Codification ©

In recent years, there has been a shift away from service-oriented
architecture’s emphasis on data at rest and toward an emphasis
on events (event-driven architecture). Moving away from data
aggregation and data lakes, we are concentrating on data in flight
and tracking it as it travels from one location to another. The
majority of systems run on what is called the “data-centric model,”
in which the data serves as the ultimate authority.

Event-Driven Architecture

4

Codification ©

When using an event-driven architecture, a model that is based on events must

replace a model that is based on data. In the event-driven paradigm, the events

are more important than the data, which still has value.

Event-Driven Architecture

The prevention of data loss was given top emphasis in the service-oriented
approach, however. The main concern with event-driven architecture is making
sure you react to events as they happen. Events have a law of decreasing returns,
which means that as they age, their value decreases. Today, however, event-driven
architecture and service-oriented architecture are frequently used in tandem.

An analogue of a log is frequently used in event-driven architecture to keep track
of things. Analysts refer to events as unchangeable things that have happened. You
can also replay the log to learn more about what transpired in the past. In contrast,
the data-centric paradigm places a greater emphasis on the data’s current state. And
lastly, analysts often compare data-centric and event-centric systems to a company’s
nervous system, which sends messages to all parts of the company, to show how
different the two are.

When you use an event-driven architecture, you have event producers that create
and send out event notifications, as well as one or more consumers that, when they
receive an event, start processing the event. Consider the scenario where a new
movie from Netflix has just been uploaded. Multiple programmes could be watching
or listening for that notice, which would then cause their systems to tell their users
about what happened. Applications continue to run, and even if they are listening for
this event, they don’t stop doing anything while they wait for it. This is different from
normal request-response messaging in that applications don’t stop doing anything
while they wait. When the message is published, they can also reply. As a result,
numerous services may operate concurrently.

What is an Event?

5

Codification ©

Any noteworthy occurrence or state change for system software
or hardware is referred to as an event. A message or notice
provided by the system to inform another component of the
system that an event has occurred is not the same thing as an
event.

An event might have internal or external inputs as its source.
Events can originate from a user, such as a keyboard or a mouse
click, an external source, like a sensor output, or the system, such
as the loading of a programme.

Event-Driven Architecture

6

Codification ©

To illustrate further, someone might buy something, someone else might check in
for a flight, or a bus might be running late. And no matter what industry one is in,
events are everywhere and happen all the time. They are present in every business.
An event is something that generates a message through production, publication,
detection, or consumption. Since the message is the travelling notification that
conveys the occurrence, the message and the event are distinct from one another.
An event in an event-driven architecture is likely to cause one or more actions or
processes to run in response to it. An instance of an event could be:

Requesting a password reset
Deliveries were made of a package to its intended location.
Unauthorised login attempt being denied

Each of these events is likely to result in one or more subsequent reactions or
processes. Simply logging the event for later review could be one option. Others
could be:

The customer receives an email with instructions on how to change the
password
The ticket for the delivery is closed
The compromised account is locked and informed to security personnel.

When an event notification is given, the system records that something happened,
such as a change in status, and then waits to respond to whoever needs it, whenever
they request it. This is known as event-driven architecture. The programme that
got the message has two options: it can reply right away, or it can hold off until the
desired state change has taken place.

Digital business applications can be made more flexible, scalable, contextual, and
responsive by using applications built on an event-driven architecture.

Event-Driven Architecture

7

Codification ©

How Event-driven Architecture Works
Three aspects can make up an event-driven architecture: a producer, consumer, and
broker. When you have a single producer and a single consumer who are in direct
contact with one another and the producer just provides the events to the consumer,
the broker may not be necessary. As an illustration, consider a producer who simply
sends to a database or data warehouse, where the events are gathered and kept for
analysis. In most businesses, several sources will advertise a variety of events, with
one or more customers showing interest in some or all of them.

Let’s examine a case in point. If you are a retailer, you may be compiling all of the
transactions that take place at all of your locations throughout the globe. You
transmit them to a credit card processor or whichever subsequent actions are
required, or you feed them into your event-driven architecture, which is keeping an
eye out for fraud. A manufacturer can monitor events in real-time and take actions,
such as predicting failures or planning maintenance, based on the data that is coming
off their equipment, which tells them facts like temperature and pressure.

Below is an example of an e-commerce website using an event-driven architecture.
During high demand, this architecture allows the site to respond to changes from
multiple sources without crashing or overprovisioning resources.

Event-Driven Architecture

Event Producer Event Consumer

New order

New order

New order

New order

Question
about stock

Question
about stock

Question
about stock

Return

Return

Return

Event Router
The router ingests, filters,
and pushes the events to

the appropriate customers.

Retail website
A consumer places a new

order through the website.

Mobile app
A customer submits
a question about the
availability of an item

through the appp.

Point-of-sale
A customer returns an item

in person at the store.

Finance system
The events trigger the

finance system to update
based on the sale and

return.

Customer realtions
The events trigger the

customer team to respond
to the order and inquiry.

Warehouse Mgmt DB

The events trigger the
warehouse to update

inventory and item
availabilty

8

Codification ©

Event-Driven Applications
Applications can react to data as it is generated using an event-driven architecture.
The growth of data sources that produce events (like IoT sensors) and the creation
and acceptance of event-streaming technologies like Hazelcast Jet and Apache
Kafka® have contributed to the event-driven approach’s recent popularity. Instead
of focusing on a few indicators in a weekly or quarterly report, businesses can use
the event-driven approach to view operations and data as ongoing events.

Let’s take the fictional characters Jason and Natalie, who have lived in several places,
as an example. If we used a traditional batch-based method with data updates to
look up their address, we would see their address as it is right now.

We are still able to ask, “What is Jason and Natalie’s address right now?” using an
event-driven architecture.

Additionally, we could inquire as to where the address Jason and Natalie lived in
2014 was.

Alternatively, “What was Natalie’s previous address before she shared one with
Jason?”

Event-driven applications are often used for the Internet of Things (IoT), detecting
fraud, processing payments, monitoring websites, and real-time marketing, among
other things. Data is frequently treated as immutable, or unchangeable, in event-
driven applications, which makes it simple to search for the values of data from
earlier times. As a result, anytime information “changes,” a new data point with a new
time period is formed.

Not every event requires the application to take action. Think about the situation
of IoT sensor data. There may be millions of non-anomalous events in an application
that scans sensor data for anomalies, but none of these events ever cause the
application to take any action.

Event-Driven Architecture

Benefits of Using Event-Driven Architecture

9

Codification ©

With the aid of event-driven architecture, organisations can
achieve a flexible system that can react to changes and make
decisions in real-time. With real-time situational awareness, all
of the data that is now available and reflects the state of your
systems may be used to inform business choices, whether manual
or automated.

Event producers and event consumers can share status and
response information in real time because events are captured as
they happen from event sources, including Internet of Things (IoT)
devices, applications, and networks.

Organisations can increase the scalability, reactivity, and access
to the data and context required for better business choices by
incorporating event-driven architecture into their systems and
applications.

Event-Driven Architecture

10

Codification ©

Ability to scale independently and fail

Your services are isolated from one another and are only aware of the event router
as a result. As a result, even if one of your services fails, the others will continue to
function. This means that your services are interoperable. An elastic buffer that can
adapt to increases in workload is what the event router does.

1.

Agile development

The event router will automatically filter and push events to consumers; you no
longer need to create custom codes to poll, filter, and route events. Additionally,
the router eliminates the need for intensive coordination between producer and
consumer services, accelerating your development cycle.

2.

Easy auditability

An event router serves as a central hub for defining policies and conducting
application audits. These policies can limit who can publish to and subscribe to a
router as well as manage who and what resources are allowed access to your data.
Additionally, you can encrypt events both in transit and at rest.

3.

Saving costs

With push-based, event-driven architectures, everything happens as soon as the
event shows up in the router. In this manner, you avoid paying for ongoing polling to
look for an event. This results in fewer SSL/TLS handshakes, less CPU use, less idle
fleet capacity, and less network bandwidth consumption.

4.

Further outcomes:

Event-Driven Architecture

11

Codification ©

Event-Driven Architecture Models
Either a pub/sub model or an event stream model can serve as the foundation for an
event-driven architecture.

Pub/sub model

This messaging system is built around event stream subscriptions. With this
strategy, subscribers who need to be informed are notified after an event occurs
or is published.

Event streaming model

Events are logged using an event streaming approach. An event stream is not
subscribed to by event consumers. Instead, they are free to join the stream at any
time and read from any point within it.

There are several forms of event streaming, including:

Event stream processing ingests events and processes or transforms the event
stream using a data streaming platform, such as Apache Kafka. Meaningful
patterns in event streams can be found via event stream processing.

Simple event processing is when an event prompts the event consumer to
respond right away.

Complex event processing requires a consumer of events to examine several
events to find patterns.

Event-Driven Architecture

Codification ©

12

When to use Event-driven Architecture?

Event-Driven Architecture

Using an event-driven design, systems can
be coordinated among teams working in
and deploying across multiple locations and
accounts. You can independently create,
scale, and deploy services by using an event
router to transport data between systems.

1. Replication of data across
accounts and regions

You can use an event-driven architecture
to monitor and receive notifications on
any abnormalities, changes, and updates
rather than constantly checking on your
resources. These resources may comprise
computing nodes, serverless functions,
database tables, storage buckets, and more.

1. Alerting and monitoring of
resource state

With an event-driven architecture, you can
spread an event across multiple systems
in response to an event without having to
write code for each consumer to receive
it. The systems will get the event from
the router, which they can then handle in
parallel for various goals.

1. Parallel processing and
fanoutt

An event-driven architecture can be
used to transmit information between
systems that are running on different
stacks without coupling. Because of the
event router’s establishment of indirection
and interoperability, the systems can
communicate messages and data while
remaining agnostic.

1. Bringing together diverse
systems

Codification ©

13

Event-driven Architecture & Microservices

Event-Driven Architecture

Applications using microservices are particularly favoured by event-driven
architectures. Microservices are designed to carry out specific tasks, frequently
ones that depend on the happening of an event. As a result, the foundation of
microservices is frequently formed by event-driven architectures.

Is Event-driven Architecture for you?
The best architectures for increasing agility and speed are event-driven ones.
They are often used in modern programmes that use microservices or any other
application with separate parts. You might need to reconsider how you see your
application design when implementing an event-driven architecture. Consider the
following to position yourself for success:

Your event source’s resilience. If you need to process every single event, your
event source needs to be dependable and offer delivery guarantees.
Your needs for performance control. You should be able to manage the
asynchronous nature of event routers in your application.
You’re tracking the event flow. An event-driven architecture’s indirection allows
dynamic tracking through monitoring services but not static tracking through
code analysis.
Your event source’s data. Your event source should be deduplicated and sorted if
you need to rebuild the state.

Summary

Codification ©

Let’s summarise the several essential event-driven architecture tenets:

Make sure the right “things” receive the right events using event brokers (creating

an event mesh).

Use topics to ensure that you send and receive only the information you require

(event filtering).

Use deferred execution with event broker persistence to let consumers process

events when they’re ready.

Keep in mind that this indicates that not everything is current (eventual

consistency).

To further distinguish the many components of a service, use topics (command

query responsibility segregation).

14

Event-Driven Architecture

Get in touch with Codification

15

Codification ©

Codification is a Cloud Native transformation consultancy, with a team of over 100 engineers,
consultants and business professionals distributed across the world. We were founded in 2019
in the United Kingdom. We have grown since then to have a presence in Europe, the Middle East
and Asia, serving leading multinational corporations, government institutions, global banks, and
industry giants with our consultancy and expertise.

Through our experience, we have noticed that visionary leaders want to transform their
organisations into technology companies to thrive in the new digital-first economy. Here,
businesses want to release software faster, improve quality and build a continuous improvement
culture where the best ideas win. At Codification, we establish the direction of a company’s
technological transformation journey and help implement new technologies and processes,
resulting in a modernised digital-ready organisation.

Codification United Kingdom
The Core
Bath Lane
Newcastle upon Tyne
NE4 5TF

Phone: +44 01670 223994

Web: www.codification.io/

Visit our website to learn more: www.codification.io/services

About Codification

Event-Driven Architecture

